4725 Further Pure Mathematics 1

1 (i) $\left(\begin{array}{cc}a-4 & 2 \\ 3 & 0\end{array}\right)$ B1 Two elements correct

B1 2 Remaining elements correct

(ii) $4 a-6$	B1	Correct determinant
	M1	Equate det A to 0 and solve
	$a=\frac{3}{2}$	A1
	3	Obtain correct answer a. e. f.

2 (i) \begin{tabular}{lll}

$u^{3}-3 u^{2}+3 u-1$ \& B1 \& | Correct unsimplified expansion of |
| :--- |
| $(u-1)^{3}$ |

\& M1 \& Substitute for x

$2 u^{3}-6 u^{2}+9 u-8=0$ \& A1 \& 3

Obtain correct equation
\end{tabular}

(ii)

4
M1 Use $(\pm) \frac{d}{a}$ of new equation
A1ft 2 Obtain correct answer from their equation

5

3	$x-\mathrm{i} y$		B1		Conjugate known
			M1		Equate real and imaginary parts
	$x+2 y=12$	$2 x+y=9$	A1		Obtain both equations, OK with factor of i
			M1		Solve pair of equations
	$z=2+5 i$		A1	5	Obtain correct answer as a complex number
					S.C. Solving $z+2 \mathrm{iz}=12+9 \mathrm{i}$ can get $\max \quad 4 / 5$, not first B1
			5		

4
M1
Express as sum of three series
M1
A1
M1 Attempt to factorise
A1
Obtain at least factor of $n(n+1)$
A1 6 Obtain fully factorised correct answer

| (i) | B1 | Rotation 90° (about origin) |
| :--- | :--- | :--- | :--- |
| (ii) Either | B1 | Anticlockwise |

(ii) $\frac{1}{\Delta}\left(\begin{array}{c}5 a-7 \\ 4 a-5 \\ 3\end{array}\right)$

M1 Attempt product of form $\mathrm{A}^{-1} \mathrm{C}$ or eliminate to get 2 equations and solve

A1A1A1 Obtain correct answer ft all 3

4 S.C. if det now omitted, allow max A2 ft 11

10 (i)

$$
\mathbf{M}^{2}=\left(\begin{array}{ll}
1 & 4 \\
0 & 1
\end{array}\right) \quad \mathbf{M}^{3}=\left(\begin{array}{ll}
1 & 6 \\
0 & 1
\end{array}\right)
$$

B1 Correct \mathbf{M}^{2} seen
M1 Convincing attempt at matrix multiplication for \mathbf{M}^{3}
A1 3 Obtain correct answer
(ii) $\mathbf{M}^{n}=\left(\begin{array}{cc}1 & 2 n \\ 0 & 1\end{array}\right)$

B1ft 1 State correct form, consistent with (i)

10 (iii)	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { B1 } \end{aligned}$	Correct attempt to multiply $\mathbf{M} \& \mathbf{M}^{k}$ or v.v. Obtain element $2(k+1)$ Clear statement of induction step, from correct working Clear statement of induction conclusion, following their working
(iv)	B1 DB1 DB1 3 11	Shear x-axis invariant e.g. $(1,1) \rightarrow(21,1)$ or equivalent using scale factor or angles

